High-throughput screening reveals a small-molecule inhibitor of the renal outer medullary potassium channel and Kir7.1.

نویسندگان

  • L Michelle Lewis
  • Gautam Bhave
  • Brian A Chauder
  • Sreedatta Banerjee
  • Katharina A Lornsen
  • Rey Redha
  • Katherine Fallen
  • Craig W Lindsley
  • C David Weaver
  • Jerod S Denton
چکیده

The renal outer medullary potassium channel (ROMK) is expressed in the kidney tubule and critically regulates sodium and potassium balance. The physiological functions of other inward rectifying K(+) (Kir) channels expressed in the nephron, such as Kir7.1, are less well understood in part due to the lack of selective pharmacological probes targeting inward rectifiers. In an effort to identify Kir channel probes, we performed a fluorescence-based, high-throughput screen (HTS) of 126,009 small molecules for modulators of ROMK function. Several antagonists were identified in the screen. One compound, termed VU590, inhibits ROMK with submicromolar affinity, but has no effect on Kir2.1 or Kir4.1. Low micromolar concentrations inhibit Kir7.1, making VU590 the first small-molecule inhibitor of Kir7.1. Structure-activity relationships of VU590 were defined using small-scale parallel synthesis. Electrophysiological analysis indicates that VU590 is an intracellular pore blocker. VU590 and other compounds identified by HTS will be instrumental in defining Kir channel structure, physiology, and therapeutic potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a selective small-molecule inhibitor of Kir1.1, the renal outer medullary potassium channel.

The renal outer medullary potassium (K+) channel, ROMK (Kir1.1), is a putative drug target for a novel class of loop diuretic that would lower blood volume and pressure without causing hypokalemia. However, the lack of selective ROMK inhibitors has hindered efforts to assess its therapeutic potential. In a high-throughput screen for small-molecule modulators of ROMK, we previously identified a ...

متن کامل

Pore Polarity and Charge Determine Differential Block of Kir1.1 and Kir7.1 Potassium Channels by Small-Molecule Inhibitor VU590.

VU590 was the first publicly disclosed, submicromolar-affinity (IC50 = 0.2 μM), small-molecule inhibitor of the inward rectifier potassium (Kir) channel and diuretic target, Kir1.1. VU590 also inhibits Kir7.1 (IC50 ∼ 8 μM), and has been used to reveal new roles for Kir7.1 in regulation of myometrial contractility and melanocortin signaling. Here, we employed molecular modeling, mutagenesis, and...

متن کامل

Novel neuroprotective K+ channel inhibitor identified by high-throughput screening in yeast.

Discovery of K+ channel modulators is limited by low-throughput capacity of existing K+ channel assays. To enable high-throughput screening for novel pharmacological modulators of K+ channels, we developed an assay based on growth of yeast that functionally expresses mammalian Kir2.1 channels. Screening of 10,000 small molecules from a combinatorial chemical library yielded 42 potential Kir2.1 ...

متن کامل

A High-Throughput Functional Screen Identifies Small Molecule Regulators of Temperature- and Mechano-Sensitive K2P Channels

K2P (KCNK) potassium channels generate "leak" potassium currents that strongly influence cellular excitability and contribute to pain, somatosensation, anesthesia, and mood. Despite their physiological importance, K2Ps lack specific pharmacology. Addressing this issue has been complicated by the challenges that the leak nature of K2P currents poses for electrophysiology-based high-throughput sc...

متن کامل

Inhibitor of growth 4 (ING4) is up-regulated by a low K intake and suppresses renal outer medullary K channels (ROMK) by MAPK stimulation.

Dietary K intake plays an important role in the regulation of renal K secretion: a high K intake stimulates whereas low K intake suppresses renal K secretion. Our previous studies demonstrated that the Src family protein-tyrosine kinase and mitogen-activated protein kinase (MAPK) are involved in mediating the effect of low K intake on renal K channels and K secretion. However, the molecular mec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 76 5  شماره 

صفحات  -

تاریخ انتشار 2009